Recombination and hitchhiking of deleterious alleles.
نویسندگان
چکیده
When new advantageous alleles arise and spread within a population, deleterious alleles at neighboring loci can hitchhike alongside them and spread to fixation in areas of low recombination, introducing a fixed mutation load. We use branching processes and diffusion equations to calculate the probability that a deleterious allele hitchhikes and fixes alongside an advantageous mutant. As expected, the probability of fixation of a deleterious hitchhiker rises with the selective advantage of the sweeping allele and declines with the selective disadvantage of the deleterious hitchhiker. We then use computer simulations of a genome with an infinite number of loci to investigate the increase in load after an advantageous mutant is introduced. We show that the appearance of advantageous alleles on genetic backgrounds loaded with deleterious alleles has two potential effects: it can fix deleterious alleles, and it can facilitate the persistence of recombinant lineages that happen to occur. The latter is expected to reduce the signals of selection in the surrounding region. We consider these results in light of human genetic data to infer how likely it is that such deleterious hitchhikers have occurred in our recent evolutionary past.
منابع مشابه
Joint effects of genetic hitchhiking and background selection on neutral variation.
Due to relatively high rates of strongly selected deleterious mutations, directional selection on favorable alleles (causing hitchhiking effects on linked neutral polymorphisms) is expected to occur while a deleterious mutation-selection balance is present in a population. We analyze this interaction of directional selection and background selection and study their combined effects on neutral v...
متن کاملRate and cost of adaptation in the Drosophila Genome
Recent studies have consistently inferred high rates of adaptive molecular evolution between Drosophila species. At the same time, the Drosophila genome evolves under different rates of recombination, which results in partial genetic linkage between alleles at neighboring genomic loci. Here we analyze how linkage correlations affect adaptive evolution. We develop a new inference method for adap...
متن کاملGene density and human nucleotide polymorphism.
Population genetics theory indicates that natural selection will affect levels and patterns of genetic variation at closely linked loci. Background selection (Charlesworth, Morgan, and Charlesworth 1993) proposes that the removal of recurrent deleterious mutations and associated neutral variants will cause a reduction of nucleotide variation in low-recombination regions. The strength of backgro...
متن کاملEvidence for Hitchhiking of Deleterious Mutations within the Human Genome
Deleterious mutations present a significant obstacle to adaptive evolution. Deleterious mutations can inhibit the spread of linked adaptive mutations through a population; conversely, adaptive substitutions can increase the frequency of linked deleterious mutations and even result in their fixation. To assess the impact of adaptive mutations on linked deleterious mutations, we examined the dist...
متن کاملThe temporal dynamics of processes underlying Y chromosome degeneration.
Y chromosomes originate from ordinary autosomes and degenerate by accumulating deleterious mutations. This accumulation results from a lack of recombination on the Y and is driven by interference among deleterious mutations (Muller's ratchet and background selection) and the fixation of beneficial alleles (genetic hitchhiking). Here I show that the relative importance of these processes is expe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 65 9 شماره
صفحات -
تاریخ انتشار 2011